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Overview
Agentic AI systems are intended to operate in, and interact with, the real world to accomplish tasks
on our behalf. This includes tasks that are mundane, like searching for a recipe, but also tasks
that involve destructive (or irreversible) actions, tasks that involve sensitive data, or tasks that
entail financial or reputational costs to rectify if they are done poorly. In this world merely saying
that a system is likely to behave correctly is not sufficient. Existing tool use frameworks [6, 25,31]
provide agents unchecked access to information and systems, which if misused, can have serious
consequences. Guarantees about behavior are limited to a statistical statement that, under normal
operating conditions, the system will, with high likelihood, behave as expected. This is insufficient
for applications which handle sensitive data or perform important operations and, in the presence
of malicious actors who seek to confuse or mislead an agent, this risk is unacceptable. This proposal
aims to provide a framework for creating trustworthy-by-construction agentic APIs that allow AI
agents to interact with the world in a safe and predictable manner even under unexpected (or
adversarial) operating conditions.

The Bosque programming language [22, 23] and software stack are uniquely suited as a basis
for this task. The Bosque language was specifically designed to support automated program
analysis and validation as well as to serve as a target language for large-language model based
code generation [22]. Using this stack as the basis this proposal aims to extend the model, and
validation tooling, to create an API specification language ecosystems that is optimized for AI agent
use, that allows developers to specify end-to-end safety/correctness properties on these APIs, and
when given a specific use by an agent, to prove that the use meets the specified properties. This
system will enable the construction and operation of highly dependable AI Agents. This framework
will also create new opportunities for workflows with iterative self-analysis and correction as well as
opportunities for improved training or synthesis via detailed feedback (reward) on the correctness
of proposed actions.
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Intellectual Merit
The proposed research addresses a foundational problem, ensuring predictable and safe behaviors,
in the development of Agentic AI systems. The use of formal methods and programming language
design is a novel contrast to the majority of work in the area which focuses on statistical guarantees
and topics of training, prompting, or actor/critic designs. Beyond the merit of the overarching prob-
lem, this project will specifically advance the state-of-the-art in (1) understanding the interaction
of programming language design and associated impacts AI Agent effectiveness in accomplishing



tasks and (2) opportunities for using formal methods in reward design for reinforcement learning
and how this impacts ability to learn short and long horizon policies.

Broader Impacts
The research in this proposal has broad ranging societal implications. The ability to create
trustworthy-by-construction APIs that allow AI agents to interact with the world in a safe and
predictable manner is a foundational problem. Guaranteed trustworthy agents represent a critical
advance over current systems which operate with statistical likelihoods of correctness and safety.
The results will be reported in publications, talks, and collaborative open-source software. The
project will involve research opportunities and training for undergraduate/graduate students. The
PI has extensive interaction and contacts with the FinTech and Software industries. Artifacts pro-
duced in this project will be open-sourced and used as a basis for industry-wide collaboration and
development.



1 Introduction
Agentic AI systems work to accomplish tasks on our behalf by interacting with the real world.
Sometimes these tasks are mundane, like searching for a recipe or writing a little poem. However,
other uses involve more complex interactions and involve potentially destructive (or irreversible)
actions. In some cases these tasks may also involve managing sensitive data or sending/receiving
messages with third-parties. In these cases the cost of an accidental failure or malicious actor
seeking to confuse or mislead an agent is significant.

Existing tool use frameworks, e.g. the recently released Model-Context-Protocol (MCP) [25],
provide unconstrained agent access to information and systems, which if misused, can have serious
consequences. Guarantees about behavior provided are limited to a statistical statement that,
under normal operating conditions, the system will, with high likelihood, behave as expected. This
is insufficient for many applications which handle sensitive data or perform important operations
and, in the presence of malicious actors who seek to confuse or mislead an agent, this risk is
unacceptable. This proposal aims to provide a framework for creating reliable-by-construction
agentic APIs that allow AI agents to interact with the world in a safe and predictable manner
under unexpected operating conditions and/or adversarial situations.

This proposal takes the position that a foundational aspect of AI Agents is the interface they
use to interact with the world. Specifically:

1. Agents use software APIs to interact with the world.
2. Agents must be able to reason, probabilistically and formally, about their actions and the

potential consequences.
3. The design and specification of APIs must be optimized for Agentic use and analysis.

Based on previous work [21,22] and industrial experience while working on Microsoft’s original
Copilot [14] project and with the Developer Tools Division [34], we hypothesize that, these three
components are fundamentally linked. Fundamentally, an API that is easy for a human to use, and
for formal verification tooling to reason about, is also an API that is easy for an Large Language
Model (LLM) [32] AI Agent to use.

1.1 AI Agentic APIs

Fundamentally, accomplishing tasks in the world requires an agent to engage with external systems
in some way. Most often this is done via calling a tool or service of some kind. For example, an
AI agent might call a weather API to get the current temperature or a payment API to process
a transaction. The manner in which these APIs (tools) are exposed to the agent is critical to the
agent’s ability to use them effectively. If the API lacks sufficient information, or is too complex,
the agent may struggle to use it correctly.

We can also consider the resilience of an API to misuse or malicious engagement. An API that
exposes too much information or that fails to verify the safety of an action can lead to unintended
consequences. Exposing a database via raw SQL commands to an agent is a recipe for disaster, as
the agent could easily execute a command that deletes all data or be tricked into exposing sensitive
information. Just as with human developers, who have been known to accidentally enter the wrong
number when executing a task, AI agents can make similar mistakes, and the same principles that
apply to creating safe and easy to use APIs for humans also apply to AI agents!

Large Language Models (LLMs) have shown remarkable capabilities in generating code and
reasoning about APIs [14, 32]. However, these models are foundationally text based, operating on
code and available APIs, based on their representation as tokens. Thus, any properties of the APIs
that are not explicit in the text available to the agent may be overlooked. Context engineering
techniques [3,10] can help, and automated context protocols [25] can provide a more structured way



to expose APIs, but these approaches are limited by the underlying API design. The less content
in the specification the less the agent has to work with, and conversely, overly verbose specification
systems lead to context confusion and agents that lose track of key information.

Thus, the first work item in this proposal is to develop an API specification system that is
optimized for AI Agentic use. This work will draw on programming language design principles
to develop a notion of lifting latent semantic API properties into explicit, and compact, syntactic
features of the API for the agent to leverage. It will also include a focus on how to express useful
sandboxing and guardrail properties that allow the agent to operate in a safe manner. The key
objectives are to create a specification system that provides the highest likelihood of correct use
by an agent, while also creating the foundation for later formal (and agentic) reasoning as well as
dynamic validation of API use and training of agents.

1.2 API Validation and Agentic Reasoning

Given a task an agent will begin creating a plan, or script, to accomplish the task. This plan will
include a sequence of API calls that the agent believes will accomplish the task and, particularly
if these calls involve an irreversible action, the agent will want to ensure that the plan is safe and
correct before executing it. A more advanced workflow would envision allowing an agent to reason
about a partial plan, and if an API misuse is identified, to use this feedback online to correct the
plan and continue execution. This is a key component of the Agentic programming model, where
the agent is able to reason about its own actions.

To support this reasoning we need to provide a means for the agent to validate its API use. This
can be done in several ways, the most direct of which is runtime validation of the conditions and
resources used by the API. The Bosque language, and the Agentic APIs from the previous section
provide, a unique environment for this as they fully sandbox the agent (preventing any surreptitious
escapes) and provide a rich set of constraints that can be efficiently checked at runtime.

Recent developments using SMT solvers to reason about Bosque code have shown that it is
possible to do fully automatic validation [24] of small to moderate sized programs! Thus, using
the Bosque language, and the Agentic APIs, provides a unique opportunity to do complete static
checking of a script or agentic plan to ensure that it satisfies all of the constraints and properties
in the used APIs and any constraints the user might provide. This can be used to reject invalid or
unsafe plans before any execution occurs, or to provide feedback to the agent about how to correct
the plan. Preliminary experiments with this approach have shown substantial promise, increasing
top-3 success rates for agentic plans by over 20%, even using naive feedback strategies without any
additional fine tuning.

This generate-check workflow is a classic approach to program generation but fails to take
advantage of the unique properties of AI Agents. The agentic ideal is for the agent to reason
about the plans online as it is generating them, and to use the incremental feedback to correct and
revise. This requires a more sophisticated approach to generation where the validation machinery
is exposed to the agent as a tool that it can use, as one of many code generation actions, to create
a script.

Thus, the second work item in this proposal is to develop a framework for runtime validation of
API usage, extending the Bosque validator to handle all of the constructs present in the agentic
APIs, and providing a means for the agent to use this validation machinery as a tool in its code
generation process. This will include a focus on how to expose the validation machinery to the
agent as one of many code generation tools. The key objectives are to create a framework that
allows the agent to reason about its own actions, to validate its plans, and to use this feedback to
correct and revise its plans in an online manner.



1.3 Learning and Using APIs

Solving long-horizon tasks requires an agent to be able to reason about its actions and the conse-
quences of those actions. It also requires the agent to learn an underlying distribution, or policy, for
what actions to take at each step. Thus, the final work item in this proposal is to develop a method-
ology for integrating the API validation and reasoning tools into the agent’s training process. This
will include developing a baseline for using direct reinforcement learning algorithms with tools [7]
as well as exploring how to use the validation tools as a means for providing immediate feedback
to the agent during training – allowing us to generate action rewards without a full trajectory and
potentially drastically improving the process.

To support research in this area our first work item will be to develop a baseline set of tasks
and performance to evaluate the impact of various tools on the agent’s ability to complete tasks.
One set of tasks we plan to use is the AppWorld [33] task set, which provides a rich set of tasks
that require the agent to interact with a variety of APIs and services. Translating these APIs
from their current form, text documentation and JSON schemas, into the Bosque API specs
will provide experience with our specification language. We will also develop a set of tasks based
on Shell activities and scripting. This second dataset represents a high-value domain for agents,
has a different distribution of API behavior, and critically for us is a domain where incremental
and interactive task completion is an appealing workflow. These datasets will provide an initial
evaluation of the impacts of API design and access to tooling on the agentic performance.

With an appropriate task set in place we will then proceed to investigate the integration of
validation tooling directly into reinforcement learning algorithms. This will include exploring the
use reward shaping to drive the best use of validation tooling and immediate reward feedback
from the validation tools to guide the agent’s learning process toward quick conclusions instead of
requiring extensive exploration. As the Bosque static validator can determine if a call will fail, or
violate a policy even before execution, we can run it at intermediate steps in a rollout to determine
if the current plan prefix is valid, and if not halt and propagate rewards immediately. We can
also shape the reward to encourage the agents to use the validation tools effectively, such as by
rewarding the agent for using the validation tool before making a call that would fail or violate a
policy, and penalizing redundant user queries or tool uses. Interestingly, we can also identify cases
where where an API call fails due to an unsatisfied precondition and what actions were missed.
Thus, we plan to explore pseudo rewards even for actions that do not appear in a given trace with
the goal of decreasing the number of needed learning steps and improving the agent’s ability to
learn from its mistakes.

Thus, the third work item in this proposal is to develop a framework for a fully integrated
agentic API and tooling learning system. Our hypothesis is that the complimentary nature of the
API specification, validation, and learning tools will allow us to create a system that is able to
rapidly learn to accomplish tasks, adapt its behavior, and improve its performance over time.

2 Background on Bosque
TheBosque programming language and software stack is uniquely designed to provide a trustworthy-
by-construction development model. Using this stack as the basis this proposal aims to extend the
model, and validation tooling, to create an API specification language ecosystems that is opti-
mized for AI agent use, that allows developers to specify end-to-end safety/correctness properties
on these APIs, and when given a specific use by an agent, to prove that the use meets the specified
properties. Thus, this system is well suited to support the construction and operation of highly
dependable AI Agents using existing architectures.



2.1 The Bosque Programming Language
Bosque is not based on a single big feature, or even a number of small novel features, instead
the value comes from a holistic process of simplification and feature selection with a single focus
toward what will simplify reasoning about code. At the core of Bosque is a let-based functional
language that is fully aligned with the goal of eliminating the complexities, mutablility, aliasing,
inductive-invariants, and nondeterminism, that have historically limited the effectiveness of formal
methods for program validation.

From this regularized core IR Bosque uses a variety of syntactic sugar to support commonly
used and easily understood programming constructs like block-structured code, reassignment of
variables, updates through (shallow) references, early returns, and object-oriented data types.
These constructs are heavily used and well understood features in modern software engineering
so supporting them allows developers to easily express their intents in a natural way. By careful
construction, these features can all be compiled directly down into the core IR representation.

A simple Bosque program, Figure 1, provides a flavor of the language. The code implements a
simple sign function. This code is very similar to the implementation one would expect in Java or
TypeScript – in fact just eliminating the explicit ‘i’ specifier on the literals would make it valid
TypeScript.

1 function sign(x: Int): Int {

2 var y = 1i;

3 if (x < 0i) {

4 y = -1i;

5 }

6 return y;

7 }

Figure 1: Sign function in Bosque.

This function highlights the use of multiple updates to the same variable and block structured
conditional flows. Bosque distinguishes between variables, let, that are fixed and those, var, that
can be updated. This ability to set/update a variable as a body executes simplifies a variety
of common coding patterns. This code can be easily converted to a SSA form [11], and the loop
freedom of the language, ensures that any assignment then also a single dynamic assignment. Thus,
reasoning about the code is entirely equational and the resulting SMTLib [8] encoding, Figure 2,
of this code is almost a 1-1 translation of the Bosque version.

1 (define -fun sign ((x Int)) Int

2 (let ((y 1))

3 (ite (< x 0)

4 (let ((y -1)) y)

5 y

6 )

7 )

8 )

Figure 2: Sign function in SMTLib.

Since Bosque is loop free it needs to provide an alternative form of iterative processing. Em-
pirically [1], and anecdotally, the vast majority of iterative processing is over collections and 90%+
of this processing can be done with higher-order functions e.g. Java Streams or C# LINQ. These
higher-order functions are a powerful programming mechanism that can be used to great effect to
simplify code as in Figure 3.



1 let l = List <Int >{1i, 2i, 3i};

2
3 let x = l.allOf(pred(x) => x >= 0i) %% takes a lambda pred -> true

4 let y = l.map <Int >(fn(x) => x + 1i) %% takes a lambda fn -> List <Int >{2i, 3i, 4i}

Figure 3: List and operations in Bosque.

As Z3 [19] and other SMT solvers have become more powerful, the ability to reason about
higher-order functions has also improved1. Thus, we can transform this code into the SMTLib
representation, shown in Figure 4, which again is a nearly 1-1 mapping of the Bosque code.

1 (let ((l (seq.++ (seq.unit 1) (seq.unit 2) (seq.unit 3))))

2 (let ((x (seq.fold_left (lambda ((acc Bool) (vv Int)) (and acc (p vv))) true l)))

3 (let ((y (seq.map (lambda ((vv Int)) (f vv)) l)))

4 ...

5 ))

6 )

Figure 4: List and operations in SMTLib.

2.2 Bosque Validation

The Bosque language includes builtin support for various validation workflows, including a spe-
cialized declaration of a parametric property test. A simple validation test that checks that the
sign function returns a value in the range [−1, 1] for any input (x) is shown in Figure 5. For a
simple property like this the Bosque compiler can show that the property holds for all inputs and
takes 7ms to complete.

1 ...

2 chktest signRange(x: Int): Bool {

3 let sgn = sign(x);

4 assert /\(-1i <= sgn , sgn <= 1i);

5 }

Figure 5: Example validation harness in Bosque.

The Bosque validator is also able to go over a small application and check, for each possible
runtime or user defined error, that either the error is impossible or that it can be triggered – and
also generate a witness input. Results for three small sample applications are shown in Table 1, the
first is a sample application from Morgan Stanley, the second is a raytracer demo from the Microsoft
MSDN blog, and the third is a port of an in-memory database (DB) from the SpecJVM98 suite.

The results of this all-error checking are shown in Table 1. The first column is the name of the
application, the second is the code that was loaded for analysis (including user and runtime code),
the third is the number of error conditions from the user code that were checked. The last three
columns are the total time for all checks, the maximum time taken for any single check, and the
number of failures found.

The key aspect of these results is 1) that the analysis is fully automatic and does not require any
additional lemmas, annotations, or proof support 2) that the analysis is fast enough and consistent
enough to be run on the scale of code generated by an AI agent. These features are critical to the

1Sequences with lambdas are fully decidable with bounded input sizes and lambdas in direct position.



Application Total Lines Checked Errors Total Time Check Max Failures

market 0.9 Kloc 6 50ms 12ms 0
raytracer 1.5 Kloc 15 422ms 54ms 1
db 1.8 Kloc 24 1359ms 135ms 1

Table 1: Results of the all-error validation on sample applications.

practical use of formal validation in the context of this work and a unique, new capability, that the
use of Bosque provides in this problem space.

3 Research Plan
Our research plan is focused on a three-pronged approach to creating trustworthy AI Agentic sys-
tems. Each of component plays a complimentary role in specifying, validating, and learning how
to use APIs in a way that is both safe and effective: API Design Optimized for Agents via a novel
API specification language and system event logic (Theme 1, §3.1), Validation of Actions on the
API via extensions to the Bosque verification stack (Theme 2, §3.2), and Leveraging Feedback to
Train and Improve Agent Actions via integration of API constraints and validation tool at training
time and as oracles for agents to query interactively during planning (Theme 3, §3.3).

3.1 Theme 1: Agentic Optimized Specifications and Checkflow Logic

In this theme our goal is to explore the design of an API specification language that is optimized
for AI Agentic usage and that allows the direct specification of behavioral guarantees. Results
from previous investigations into AI aware programming language design [22] and Data Specifica-
tions [23] demonstrated the effectiveness of this general approach and provide a foundation for this
investigation. This proposal envisions extending these ideas from pure and isolated type (or func-
tion) specifications to systems where actions are effectful and specifications range over sequences
of actions and events.

The first step in creating a truly Agentic optimized programming API framework is to develop
a suitable action language and specification system. Consider the task of paying a bill. The core
API is as simple as:

1 type USD = Decimal;

2
3 entity Account { ... }

4 entity Confirmation { ... }

5
6 api transfer(amt: USD , from: Account , payee: Account): Confirmation;

This API provides a syntactically explicit and useable description for an AI Agent. Bosque
is designed to move information from implicit (API documentation pages) into explicit syntactic
features of the code. In our example the type system allowing the type alias of USD to be used
as a unit of currency instead of a simple number with a comment that it is a dollar amount.
Preliminary experiments show that, even without specific training, an model like Gemini-2 or GPT-
4 has a roughly 20% higher success rate of generating code using this API than the equivalent in
TypeScript.

Even with this significantly improved success rate the API is still ripe for accidental misuse or
targeting by malicious actors seeking to confuse our agent. Today we could improve this API in
Bosque by adding a simple pre-condition to the API:



1 api transfer(amt: USD , from: Account , payee: Account): Confirmation

2 requires 0.0<USD > < amt;

3 requires amt <= 100.0 <USD >;

4 ;

These simple pre-condition ensure the useful constraint that we should never pay a negative
amount of money (also a payment of zero does not make sense) and that the API cannot be used
to transfer more than $100.0 USD. However, this is not entirely satisfactory as an agent could still
erroneously transfer money, even if the amount is small. Further, the dollar amount is hard-coded
into the API and does not allow for situational flexibility when the agent is operating in a different
contexts/environments.

3.1.1 An Explicit Agent Environment and Resource Model.

Fundamentally, AI Agents are always operating in some context or environment. This context may
be information about the current state of the world, such as the current location, a most recent
text message list, or the name of the person the agent is acting on behalf of, or this information
may describe resources/constraints available to the agent, such as a database authorization token,
an allow-list of accessible files, or a limit on spending. In our example, we would like to be able to
include this context in the API specification so that the agent may use this information to make
decisions about how to use the API and we can verify that the agent is behaving correctly with
respect to this context.

Conveniently, programming languages have two well known concepts that support these needs
– Scoped Dynamic Environments and Uniform Resource Identifiers (URIs). Scoped Dynamic En-
vironments allow us to describe a set of ambient variables that are available to the agent during the
execution of some code and to define what context needs to be setup to successfully use and API.
The ambient nature of these variables provides a natural way to descibe the context in which an
agent is operating while dynamic scoping allows us to extend and modify the context as the agent
operates. URIs are a familiar and flexible (syntactic) way to describe permissions at a logical level
– notably the underlying data representation is not exposed via the URI naming scheme which is
simply a logical syntactic identifier. Thus, developers can use these to organically create a model
of arbitrary resources and access controls (using Globs) that compactly describe the resources that
an agent can access (and that are accessed by any given API call).

1 api transfer(amt: USD , from: Account , payee: Account): Confirmation

2 env={

3 PAYMENT_AUTHORIZATION: OAUTH_TOKEN ,

4 PAYMENT_LIMIT: USD

5 }

6 permissions ={

7 \account:${from.routing }/${from.account }\
8 }

9
10 requires 0.0<USD > < amt;

11 requires amt <= env.PAYMENT_LIMIT;

12 ;

Figure 6: An example of an API specification that uses scoped dynamic environments and URIs
to describe the context in which the API can be used.

Figure 6 shows an example of how we can use these concepts to create a more flexible API
specification. The API now describes the context in which it can be used, including the required
OAuth token for payment authorization and the maximum payment limit. The API also describes
the resources the API accesses, in this case the account that the payment is being made from.



In addition to providing a more flexible API specification, this approach also allows us to more
precisely specify the behavior of the API. The pre-conditions now refer to the dynamic environment
variable env.PAYMENT LIMIT, allowing the specification to be parameterized by the current context.
In addition the permission URIs can be specified, not just as constants, but parametrically based
on the values of the environment or, in this case, the values of the API parameters.

An interesting feature to note in the specification from Figure 6 is that the API permissions
set only includes the from account. Although this may seem counter-intuitive, it is a natural
consequence of the logical model of URIs as permissions and not physical resource requirements.
Although the API is transferring money from one account to another, and physically the payee

account will likely be modified eventually, the API does not need to have permissions to access to
the payee account in order to execute the call to the transfer API. This highlights the distinction
between logical permissions and physical resource access in the API design. This model allows the
creation of permissions that are flexible and can be developed organically for domains as needed
as opposed to requiring the creation of a fixed set of resource types and capabilities [2] which
developers have historically struggled to manage.

This API specification has several features that are natural improvements on existing state-of-
the-art approaches in the Agentic space. When looking at Model-Context-Protocol (MCP) [25], and
the underlying concepts from REST [13], which envision dynamic discoverability and use of APIs, we
see that the proposed Bosque specification language and extensions provide several improvements.
First, as opposed to the verbose and limited type system provided by JSON Schema/OpenAPI,
Bosque provides a rich type system that allows for more precise and expressive API and compact
specifications. This increases the likelihood of successful correct use by an agent and reduces the
number of context tokens used – which reduces the risk of dilution in the prompt. Additionally,
the structured nature of the components of the specification provides a strong structure for the
underlying LLM to key on. In the payment example, the specifications make it explicit that the
API enforces a payment limit, e.g. the requires clause and the code for the check, are strong signals
to the agent that it needs to consider the relation between the payment amount and the limit before
calling the API.

The explicit nature and structure of the specifications, as opposed to free form text structure
in MCP, also simplifies the tasks of pre-selecting tools (APIs) via Resource Augmented Generation
(RAG) [20] and improves the ability of an agent to correctly select which tools (APIs) to use
for a given task. This is particularly important in the context of adversarial attacks, where an
agent may be tricked into using an API that is not appropriate for the task at hand. In RAG a
pre-processing document retrieval step is used to search for the most relevant items, in our case
APIs, to include as possible resource for use in the agent’s task. The structured nature of the
Bosque API specification allows for more precise and effective retrieval of relevant APIs. Once in
the agent’s context, the structured nature of the API specification allows the agent to more easily
reason about the APIs and which are the best options. In the payment example, the specification
is explicit about the permissions, allowing the agent to quickly ignore APIs, that it does not have
the needed permissions for.

Task 1.1: Static API Specifications. The objective of Task 1.1 is to develop and experiment
with extensions to the Bosque language for specifying Agentic APIs and generate a baseline success
rate over a set of benchmark tasks. The results of this work will provide a baseline for future
investigation as well as generate a solid foundational Agentic API specification language that is
capable of effectively encoding static properties of APIs that are useful for AI Agents.



3.1.2 Behavioral Checkflow Logic.

The objective of Task 1.1 is to develop a specification language that allows for the direct specification
of static behavioral guarantees. However, agentic tasks are dynamic multi-step processes that
involve sequences of actions and events. The APIs that are used often have constraints on the
order of their use or other temporal properties that must be satisfied. For example, a payment API
may require that a user confirmation has been made before a payment is sent, or before sending a
purchase confirmation, that the reservation has been successfully made in the system. If we look
at the example payment API we can extend it with a user confirmation requirement as shown in
Figure 7.

1 api transfer(amt: USD , from: Account , payee: Account): Confirmation

2 env={

3 PAYMENT_AUTHORIZATION: OAUTH_TOKEN ,

4 PAYMENT_LIMIT: USD

5 }

6 permissions ={

7 \account:${from.routing }/${from.account }\
8 }

9
10 requires 0.0<USD > < amt;

11 requires amt <= env.PAYMENT_LIMIT ||

12 $events.contains(ExplicitUserApprove {|payee=payee , amt=amt |});

13 ;

Figure 7: An example of an API specification wih a behavioral checkflow.

In this conceptual example we have added the requirement that the payment amount must be
less than the limit, or that an explicit user approval event has occurred. The fundamental concept
here, of temporal safety properties, and has been explored in many contexts [9,18,26,30]. However,
these systems have several limitations in this application. The first is that temporal logics are often
difficult for developers to author and are limited in the range of properties that can be expressed.
The second is that they introduce a second language and logic into the system, which increases the
complexity of understanding and authoring a specification.

Instead for this proposal we envision a more direct and intuitive way to express these properties
using the Bosque language. Based on extensive developer interviews and conversations, while
working on developer tools at Microsoft and Morgan Stanley, we have found that developers often
think of these properties in terms of a (linearized) series of events that occur during the execution
of a system. Then conditions over the sequence of events, such as ”the user must approve the
payment before it is sent” or ”if a read etag matches the previous write etag then the contents
of the read are equal to the contents written”, can be expressed in a more natural way as code
checking a boolean condition on the event list. This has the benefit of being directly expressible
as code in a manner a developer (or LLM based agent) is already familiar with and allows for the
expression of arbitrary computable conditions over the sequence of events.

This form of logical predicates over sequences of events can also be used to express the effects
of API calls as well. Consider an application for renting a sailboat. A sailboat rental API might
have a sequence of events that includes checking the weather forecast and confirming inventory
availability. An example of such an API from a Morgan Stanley tech-demo is shown in Figure 8.

In the example (Figure 8) we have an API that allows an agent to rent a sailboat for a given
day. The API has two permissions, one for the weather service and one for the internal sailboat
availability service (which is otherwise opaque to us). The API is defined as ensuring that if the
response is a success, then two events must occur during the execution of the API call:



1 datatype Response = Success | Failure;

2
3 api rentSailboat(quantity: Nat , day: LocalDateTime): Response

4 permissions ={

5 \web_http:api.weather.gov/\,

6 \ms_service:sailboat_availability\

7 },

8
9 ensures Response === Success ==>

10 $events.contains(SafeWeather {|day=day , response=Ok|});

11 ensures Response === Success ==>

12 $events.contains(ReserveInventory {|
13 day=day , quantity=quantity , response=Approved

14 |});

15 ;

Figure 8: An example of an API specification wih a behavioral checkflow.

1. There must have been an API call to check that the weather is safe for sailing that day.
2. There must have been a successful API call to ensure availability and reserve the sailboat

inventory for the given quantity.

By directly integrating these specifications in the language, and automatically emitting the event
generation as part of the runtime, the system can track and verify these properties. These properties
are also made syntactically visible to the AI Agents so that they can identify key requirements and
effects to reason about. This should allow them to effectively identify which APIs are appropriate
for accomplishing their objectives and to identify appropriate sequences of API calls to accomplish
them (as well as what potential failures and recovery strategies are needed).

Task 1.2: Checkflow Logic and API Specifications. The objective of Task 1.2 is to develop
and experiment with a novel temporal logical extension to the Bosque language for specifying
dynamic API properties. The results of this work will provide a powerful new tools for specifying
dynamic properties of APIs and will allow our AI agents to reason about the sequences of actions
needed to accomplish their tasks.

3.2 Theme 2: Validation of Agentic APIs and Tools
In this theme our goal is to explore three mechanisms for ensuring that AI agents always use APIs
correctly! The first step is to implement a comprehensive sandboxing and runtime-verification
system in the Bosque runtime. This baseline safety guarantee will immediately allow us to deploy
agents into environments where correctness and security are critical. The second step is to integrate
a formal validation system that allows us to prove that an agent’s use of APIs (and thus behavior)
is correct w.r.t. to the API specification. This will allow us to provide strong guarantees about the
agent’s behavior in a wide range of scenarios even prior to execution and also has the potential to
substantially improve the agents success rate in task completion. The third step is to expose the
validation tools directly to the agent during their planning process as an online feedback loop. This
will allow us to create agents that are able to reason about their own actions.

3.2.1 Runtime API Checking.

Runtime validation is a well studied problem in programming languages and systems [16,18]. The
specification language for APIs in Bosque presents several novel challenges as the API specifica-
tions may be arbitrary code, the specifications include sandbox constraints, and there are unique
challenges in domains with agentic systems (e.g., an agent using a shell [15]).

Sandboxing resources is a critical topic for agents as prompt injection attacks [25, 27] can be
used to exfiltrate information from the agent. Recent work has looked at reviving classic resource



sandboxing techniques for Java [2] or filesystem permissions [15]. However, as described in §3.1.1,
these access models have historically had limited adoption with developers in practice. Thus, this
proposal will explore option for the runtime validation of the parametric URI path based resource
sandbox specifications. As this is a novel approach our first step will be to evaluate the performance
implications of API calls with a naive check of the paths at each call. Based on the outlined design,
checking if a given API call is compatible with the resource constraints requires checking path
constraints of both the current API at runtime, our hypothesis is that the URI path constraints
should be linear time checkable which would ensure that the cost of the check is minimal.

For the requires and ensures clauses, as these are simply developer written Bosque code, we
believe that users will be able to anticipate the costs of running these checks dynamically or be able
to profile and adjust them using standard engineering practices. One of the most common patterns
is to selectively enable these checks in production environments, i.e. test or debug scenarios, which
is trivially and explicitly supported in Bosque with dedicated keywords. Thus, developers should
be capable of estimating and managing these costs appropriately.

Task 2.1: Runtime Checking Implementation. The objective of Task 2.1 is to develop and
experiment with a baseline implementation of runtime checking for API calls in the Bosque lan-
guage. The results of this work will provide a powerful tool for guaranteeing the safety of agentic
generated code.

3.2.2 Offline API Validation.

Runtime validation is a powerful tool. It provides a baseline for ensuring safe API usage and is
guaranteed to prevent an agent from performing an unsafe action. We can also use this runtime
validation, in conjunction with automated test generation [5, 17], to evaluate the correctness of a
proposed plan or script. However, as with all test based approaches, this is limited by the coverage
of the tests and the tendency of test-based feedback to lead LLM based code generation to over-fit
to the tests. Ideally, we would like to statically validate the proposed plan for adherence to the
specification and correct API usage. This validation provides a much stronger guarantee than a
test-based approach, and provides an opportunity to generate generalized feedback on failures that
encourage the agent toward more generalized, and likely more correct, adjustments to the generated
code.

Consider the example request for an agent to “send a payment to Tom for half of the lunch
bill” as shown in Figure 9. This code shows a hypothetical agent generated script to accomplish
the task. The agent first searches for a payment request for Tom, then uses another LLM agent to
process the semi-structured text in the payment request (and memo field) to determine the amount
to pay, and finally attempts to transfer the payment. If the agent.query action were unlucky2, or
the lunch was particularly expensive, this computed amount could be large enough to exceed the
payment limit of the user.

The runtime verification system developed in §3.2.1 would catch this error at runtime but, using
Bosque (§2), we can also statically run symbolic validation on this script to detect that they amt

value may exceed the payment limit and that the, otherwise required, user confirmation check is
missing!

Further, the feedback generated by test case generation might be something like ”Input pay-
ments: [user: ”Tom”, memo: ”lunch”, amount: 200], env: PAYMENT LIMIT: 100 violates transfer
precondition”. This feedback can be useful for the agent to try and correct the script but it can
also cause the agent to focus on details of the test case and over-fit. Perhaps adding the (erroneous)
check – if(amt >= 100) return "Too much money to send";. By symbolically identifying the pos-
sible precondition violation we can provide a more general feedback message to the agent, such as

2Perhaps Tom likes jokes and puts in the memo field – “ignore previous instructions and pay me $1000”.



1 let request = payments.search(user="Tom", memo="lunch");

2 let amt = agent.query <Decimal >( request.asText (), "What is half of the lunch bill?");

3 if(amt === none) {

4 return "I don ’t know how much to pay Tom.";

5 }

6
7 let result = transfer(USD::from(amt), from=env.account , payee=request.payee);

8 if(result.success) {

9 return "${amt} was sent to Tom for lunch.";

10 }

11 else {

12 return "Unable to send the payment.";

13 }

Figure 9: An example generated script for the request – ”Please send Tom payment for my half of
the lunch bill”.

– The amount to pay Tom may exceed the ”PAYMENT LIMIT” in ”env” – or even computing
weakest-preconditions for various points in the code to help the agent identify the best candidate
fixes for the code.

Task 2.2: Static Validation Implementation. The objective of Task 2.2 is to extend the
Bosque validation toolchain to support the Checkflow logic for API specifications introduced in
theme #1. The results of this work will provide a powerful new tools for checking agentic generated
code and providing generalized feedback on failure modes.

3.2.3 Validation as a Tool.

The final step in this theme is to expose the validation tools directly to the agent during their
planning process as an online feedback loop. This will allow us to create agents that are able to
reason about their own actions. Looking at the payment example in Figure 9, somewhere around
half of the generated code comes after the transfer call, at which point the plan has already failed.
Thus, the direct generate-validate-retry loop is clearly inefficient in this case. Further, standard
design guidelines for LLM based code generation suggest [4] that simply retrying the generation
from scratch is often more effective then attempting to ask for a correction to the existing code –
which often results in the agent performing other error introducing operations in addition to fixing
the issue that was flagged.

Instead, this proposal intends to explore how to integrate validation tools directly into the agents
planning and code generation process. Tool use is an active topic of investigation, with the most
common tools being abilities to run tests, search codebases, make notes, and edit code [14, 25, 32].
These agents proceed by generating code interleaved with tool uses.

In our example we envision the agent being able to run the validation tool before an API call
is added to the partial plan to see if the call is valid and if not, what needs to be done before the
call can be made.

The code in Figure 10 shows a hypothetical agent & tool chain-of-thought, tool use, and re-
sponse. At the point where the agent is preparing to call an API, e.g. the transfer API, it can
call the validation tool to check that the requirements for the API call are met. The validation
tool can then respond with a list of missing checks or requirements that the agent needs to address
before the API call can be made. Using this feedback the agent can either emit the action code, if
everything is satisfied, or generate additional code to address the missing requirements.

This capability should enable the agent to achieve a higher success rate in task completion and
be more robust to errors, as it can reason about its own actions and correct them before they are
executed. Further, this approach has the potential to enable a new class of reactive, notebook style,



1 let request = payments.search(user="Tom", memo="lunch");

2 let amt = agent.query <Decimal >( request.asText (), "What is half of the lunch bill?");

3 if(amt === none) {

4 return "I don ’t know how much to pay Tom.";

5 }

6
7 %% Agent -- I want to call the transfer API with amount set to amt

8 %% Agent -- calling validation tool to check that API conditions are met

9 %% Response -- Missing check for PAYMENT_LIMIT or explicit user confirmation

Figure 10: An example of online agentic generation with validation as a tool.

agents that interleave code generation, validation, execution, and user interaction, to accomplish
complex tasks in a more efficient and effective manner.

Task 2.3: Exposing Validation Tools to Agents. The objective of Task 2.3 is to develop and
experiment with a methods for exposing validation as tools that an agent can access online as it
generates code. The results of this capability should lead to substantial increases in the success
rate of agentic code generation and a more robust, and possible interactive, agentic systems.

3.3 Theme 3: Learning to Reason About and Use APIs

Solving long-horizon tasks requires an agent to be able to reason about its actions and the conse-
quences of those actions. It also requires the agent to learn an underlying distribution, or policy,
for what actions to take at each step. Running an analysis before making an API call that has
destructive or irreversible effects is crucial for ensuring safe and correct behavior. Querying a user
to confirm an action before taking it or asking for additional information to proceed can be cru-
cial. However, an agent that asks for confirmation on every step or that spends minutes at a time
analyzing possible action sequences is not usable or effective. Thus, the final work item in this
proposal is to develop a methodology for integrating the API validation and reasoning tools into
the agent’s training process. This will include developing a baseline for using direct reinforcement
learning algorithms with tools [7, 12, 29] as well as exploring how to use the validation tools as a
means for providing immediate feedback to the agent during training – allowing us to generate
action rewards without a full trajectory and potentially drastically improving the process.

With an appropriate task set in place we will then proceed to investigate the integration of
validation tooling directly into reinforcement learning algorithms. This will include exploring the
use of reward shaping to drive the best use of validation tooling and immediate reward feedback
from the validation tools to guide the agent’s learning process toward quick conclusions instead of
requiring extensive exploration.

Thus, the third work item in this proposal is to develop a framework for a fully integrated
agentic API and tooling learning system. Our hypothesis is that the complimentary nature of the
API specification, validation, and learning tools will allow us to create a system that is able to
rapidly learn to accomplish tasks, adapt its behavior, and improve its performance over time.

In this theme our goal is to evaluate the impact of API specifications and validation tools on
agent performance as well as exploring approaches for integrating the API features and tooling
directly into the training phase of an agent. The first work item is to develop a baseline set of tasks
and performance metrics to evaluate the impact of various tools on the agent’s ability to complete
tasks. Using this baseline we will then explore the impacts of API specifications and the agent’s
ability to reason about and use APIs. From there we will explore the potential for integrating the
API validation and reasoning tools into the agent’s training process.



3.3.1 Evaluation Suite and Baseline Performance.

To evaluate the impact of API specifications and validation tools on agent performance, we will
develop a baseline set of tasks and performance metrics. Our first set of tasks will be based on the
AppWorld [33] task set, which provides a rich set of tasks that require the agent to interact with a
variety of APIs and services. Translating these APIs from their current form, text documentation
and JSON schemas, into the Bosque API specs will provide experience with our specification
language. We will also develop a set of tasks based on shell activities and scripting [15]. This second
dataset represents a high-value domain for agents, has a different distribution of API behavior, and
critically for us is a domain where incremental and interactive task completion is an appealing
workflow. These datasets will provide an initial evaluation of the impacts of API design and access
to tooling on the agentic performance.

Based on these evaluation suites we plan to conduct several baseline experiments. The first
is to evaluate the impact of API specifications on agent performance vs. performance reported on
the tasks using only textual documentation and JSON schemas. This will quantify the impact of
API design on agent performance and which features of Bosque contribute the most to improved
performance. The second baseline evaluation is to evaluate the impact of validation tools on agent
performance. This will be based on a direct generate and check approach to task completion, where
the agent generates multiple complete sequences of actions which are then filtered by the validation
tools.

Task 3.1: Baseline Evaluation. The objective of Task 3.1 is to develop a robust evaluation
suite and baseline performance metrics for API and validation contributions of this research. The
results of this capability provide a foundation for the rest of the project and also represent a useful
contribution to the community. High-quality evaluation suites across a variety of tasks and domains
are a critical component of agentic research.

3.3.2 Integrating API Validation and Reasoning Tools into Agent Training.

The second work item in this theme is to develop a methodology for integrating API validation
and reasoning tools into the agent’s reinforcement learning training process. This will include
developing a baseline for using direct reinforcement learning algorithms with tools [7, 12, 29, 33] as
well as exploring how to use the validation tools as a means for providing immediate feedback to
the agent during training.

Our first planned use of the validation tools is to provide the ability to terminate a rollout early
if the current plan prefix is invalid. This will allow us to generate action rewards without a full
trajectory. Using the Bosque static validator, we can determine if a call will fail or violate a policy
and what actions were missed. Interestingly, we can also identify cases where where an API call
fails due to an unsatisfied precondition and what actions were missed as in Figure 10. Thus, we
plan to explore pseudo rewards even for actions that do not appear in a given trace with the goal
of decreasing the number of needed learning steps and improving the agent’s ability to learn from
its mistakes.

The second area we plan to investigate is the use of the validator, and other static analysis tools,
to provide more effective reward signals in general. Even among successful plans, the agent may
make redundant calls or be overly eager in asking for user confirmation. We can use the validation
tools, as well as other standard compiler techniques, to evaluate completed scripts and identify
undesirable features to shape the reward function.

Task 3.2: Integration of API Validation and Reasoning Tools into Agent Training. The
objective of Task 3.2 is to develop a methodology for integrating API validation and reasoning tools
into the agent’s reinforcement learning training process. The core techniques used in this task have
been previously developed in the context of exposing other code generation tools, like semantic



analysis, type-checking, linting [14, 25, 28] to agents. However, given the substantial increase in
power that the Bosque static validator provides, we expect to be able to achieve substantial
improvements via the integration of these tools and enabling the agent to self-introspect on code
it generates and actions it takes.
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